Two players are playing the following game with a positive integer N. On his turn a player has to write down on paper some integer between 1 and N. But it's forbidden to write an integer which is a divisor of some number already written on paper. For example N = 8 and numbers already written are: 6, 4, 7. In this case the new integer can be only 5 or 8.
If a player can not write a new number on his turn then he loses. Given the integer N can you figure out who will win the game if we assume that both players play optimally?
Input
The first line contains T - the number of test cases. The following T lines contain one integer N each for the following test case.
Output
For each test case output 1 or 2 on a separate line depending on the answer for this test case.
Constraints
- 1 <= T, N <= 30
Subtasks
- 1 <= T <= 5, 1 <= N <= 10 in 40% of test data.
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor
Login to unlock the editorial
Please login to use the editor
You need to be logged in to access the code editor
Loading...
Please wait while we load the editor