phi-phi-phi
Practice
3.5 (15 votes)
Easy
Euler's totient function
Math
Number theory
Problem
91% Success 8060 Attempts 20 Points 2s Time Limit 256MB Memory 1024 KB Max Code

Given n and k, calculate \(\varphi(\varphi(...\varphi(n)...))\), where \(\varphi\) applied exactly k times.

\(\varphi(n)\) is Euler's totient function. \(\varphi(1)=1\) by definition.

You can find the definition of Euler's totient function here.

Input format

The only line of input contains two integers n and k (\(1 \le n \le 10^{18}\), \(1 \le k \le 10^{18}\)).

Output format

Print one integer - answer to the problem.

Scoring

\(n \le 10^{3}\), \(k \le 10^{3}\) - 10 points

\(n \le 10^{6}\), \(k \le 10^{18}\) - 15 points

\(n \le 10^{12}\), \(k = 1\) - 10 points

\(n \le 10^{12}\), \(k \le 10^{18}\) - 10 points

\(n \le 10^{15}\), \(k = 1\) - 5 points

\(n \le 10^{15}\), \(k \le 10^{18}\) - 40 points

\(n \le 10^{18}\), \(k \le 10^{18}\) - 10 points

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:20
13 votes
Tags:
AlgebraEasyEuler's totient functionMathNumber Theory
Points:20
38 votes
Tags:
ApprovedEasyEuler's totient functionMathOpen